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FIGURE 1: Regulation of HIF transcriptional activity. Under normoxia, HIF-u is hydroxylated by PHD enzymes, resulting in the recognition
of HIF- by an ubiquitin-E3 ligase complex and subsequent proteasomal degradation. Asparagine hydroxylation by FIH prevents the recruit-
ment of the transcriptional coactivators/histone acetyltransterases p300/CBP, decreasing HIF transactivation activity. Under hypoxia, HIF-u is
stabilized and translocates into the nucleus, forming an heterodimer with HIF-B. Once activated by CBP/p300, this structure will bind to hyp-
oxia-response elements and enhance the expression of target genes. The HIF pathway can be modulated through the inhibition of the HIF
hydroxylases by different compounds, such as L-mimosine, CoCl,, DMOG or deferoxamine. Maore selective HIF HIs are contained within the
new class of ~dustat inhibitors, which were recently developed for the treatment of anaemia. All HIF Hls will increase HIF-a. Zinc and the
compound YC-1 were reported to be HIF-a inhibitors.
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FIGURE 2: The effects of hypoxia. Hypoxia activates the HIF, which will trigger a transcriptional adaptive response regulating metabolism, in-
creasing EPO and iron metabolism, vascularization and angiogenesis. Hypoxia can also lead to HIF-independent responses, for example
through regulation of the NF-kB pathway. Besides the HIF-mediated response, there is also a hypoxia-dependent regulation of gene expression
independent of HIF.
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